试题
题目:
如图,AB为⊙O的直径,半径OC⊥AB,D为AB延长线上一点,过D作⊙O的切线,E为切点,连接CE交AB于点F.
(1)求证:DE=DF;
(2)连AE,若OF=1,BF=3,求DE长.
答案
解:(1)连接OE,
∵DE为圆的切线,
∴OE⊥ED,
∴∠OEC+∠CED=90°,
∵OC⊥AD,
∴∠COD=90°,
∴∠C+∠CFO=90°,
∵∠CFO=∠DFE,
∴∠C+∠DFE=90°,
∵OC=OE,
∴∠C=∠OEC,
∴∠DFE=∠DEF,
∴DE=DF;
(2)在Rt△OED中,OE=OB=OF+FB=1+3=4,
根据勾股定理得:OD
2
=OE
2
+ED
2
,即(1+DF)
2
=(1+DE)
2
=4
2
+DE
2
,
解得:DE=7.5.
解:(1)连接OE,
∵DE为圆的切线,
∴OE⊥ED,
∴∠OEC+∠CED=90°,
∵OC⊥AD,
∴∠COD=90°,
∴∠C+∠CFO=90°,
∵∠CFO=∠DFE,
∴∠C+∠DFE=90°,
∵OC=OE,
∴∠C=∠OEC,
∴∠DFE=∠DEF,
∴DE=DF;
(2)在Rt△OED中,OE=OB=OF+FB=1+3=4,
根据勾股定理得:OD
2
=OE
2
+ED
2
,即(1+DF)
2
=(1+DE)
2
=4
2
+DE
2
,
解得:DE=7.5.
考点梳理
考点
分析
点评
专题
切线的性质.
(1)连接OE,由DE为圆的切线,得到OE垂直于ED,得到一对角互余,再由CO垂直于AD,得到一对角互余,再由等边对等角及对顶角相等得到∠DFE=∠DEF,利用等角对等边即可得证;
(2)由OF+FB求出OB的长,即为OE的长,根据DE=DF,在直角三角形OED中,利用勾股定理即可求出DE的长.
此题考查了切线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握切线的性质是解本题的关键.
计算题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )