试题
题目:
(2010·下城区模拟)如图,△ABC中,∠B=∠C=30°,点D是BC边上一点,以AD为直径的⊙O恰与BC边相切,⊙O交A
B于E,交AC于F.过O点的直线MN分别交线段BE和CF于M,N,若AM:MB=3:5,则FC:AF的值为( )
A.3:1
B.5:3
C.2:1
D.5:2
答案
A
解:∵∠B=∠C=30°,⊙O恰与BC边相切,AD⊥BC,
∴AB=AC=2AD=2×2r=4r;
连接OE,则OE=OA,
又∵∠BAD=(180°-30°-30°)÷2=60°,
∴OA=AE=OE=r,
同理,AF=r.
则FC=AC-AF=4r-r=3r.
∴FC:AF=3r:r=3.
故选A.
考点梳理
考点
分析
点评
切线的性质;等腰三角形的性质.
根据题意,利用特殊角度建立AF与半径、AC与半径之间的关系,从而求解.
根据切线性质,判断出AD⊥BC,根据∠B=∠C=30°,判断出AB=AC,灵活运用等腰三角形的性质和勾股定理解答.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )