试题
题目:
(2011·河南一模)如图,⊙O的半径为1,PA切⊙O于点A,连接OA,OP交⊙O于点D,且∠APO=30°,弦AB⊥OP于点C,则图中阴影部分面积等于( )
A.
π
6
B.
π
3
C.
π
2
D.
3
2
π
答案
A
解:∵PA是半径为1的⊙O的切线,
∴OA⊥PA,
而∠APO=30°,∠POA=90°-30°=60°,
又∵OP垂直平分AB,
∴△AOC≌△BOC,
∴S
△AOC
=S
△BOC
,
∴S
阴影部分
=S
扇形OAD
=
60π×
1
2
360
=
π
6
.
故选A.
考点梳理
考点
分析
点评
扇形面积的计算;垂径定理;切线的性质.
由PA是半径为1的⊙O的切线,得到OA⊥PA,而∠APO=30°,∠POA=90°-30°=60°,而OP垂直平分AB,得到S
△AOC
=S
△BOC
,从而得到S阴
影部分
=S
扇形OAD
,然后根据扇形的面积公式计算即可.
本题考查了扇形的面积公式:S=
nπ
r
2
360
,其中n为扇形的圆心角的度数,R为圆的半径),或S=
1
2
lR,l为扇形的弧长,R为半径.也考查了切线的性质.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )