试题
题目:
(2013·南充模拟)如图,⊙O与AB切于点C,∠BCE=60°,DC=6,DE=4,则S
△CDE
为( )
A.
6
5
B.
6
3
C.
6
2
D.6
答案
B
解:过C作CF⊥DE,交DE于点F,
∵AB与圆O相切,CE为圆O的弦,
∴∠CDE=∠BCE=60°,
在Rt△CDF中,DC=6,∠CDE=60°,
∴CF=DCsin60°=3
3
,
又DE=4,
则S
△CDE
=
1
2
DE·CF=6
3
.
故选B
考点梳理
考点
分析
点评
专题
切线的性质;含30度角的直角三角形.
过C作CF垂直于DE,由AB为圆O的切线,利用弦切角等于夹弧所对的圆周角,得到∠CDE=∠BCE=60°,再直角三角形CDF中,由DC的长,利用锐角三角函数定义求出CF的长,由DE为底边,CF为高,求出三角形CDE的面积即可.
此题考查了切线的性质,锐角三角函数定义,以及三角形的面积求法,熟练掌握切线的性质是解本题的关键.
计算题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )