试题
题目:
(1998·山东)如图,在⊙O中,AB为⊙O的直径,AD为弦,过B点的切线与AD的延长线交于点C,若AD=DC.则sin∠ACO等于( )
A.
10
10
B.
2
10
C.
5
5
D.
2
4
答案
A
解:连接BD,作OE⊥AD.
AB是直径,则BD⊥AC.
∵AD=CD,
∴△BCD≌△BDA,BC=AB.
BC是切线,点B是切点,
∴∠ABC=90°,即△ABC是等腰直角三角形,∠A=45°,OE=
2
2
AO.
由勾股定理得,CO=
5
OB=
5
AO,所以sin∠ACO=
EO
CO
=
10
10
.
考点梳理
考点
分析
点评
专题
切线的性质.
连接BD,作OE⊥AD.在Rt△OEC中运用三角函数的定义求解.
本题利用了切线的性质,等腰直角三角形的判定和性质,勾股定理,正弦的概念求解.
压轴题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )