试题
题目:
(1999·南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是( )
A.16π
B.36π
C.52π
D.81π
答案
B
解:连接OP、OB.
∵大圆的弦AB与小圆相切于点P,
∴OP⊥AB,
∴PA=PB.
∵CD=13,PD=4,
∴PC=9.
根据相交弦定理,得PA=PB=6,
则两圆组成的圆环的面积是πOB
2
-πOP
2
=πPB
2
=
π
4
AB
2
=36π.
故选B.
考点梳理
考点
分析
点评
专题
相交弦定理;勾股定理;垂径定理;切线的性质.
连接OP,先根据切线的性质定理和垂径定理证出PA=PB,再根据相交弦定理求得AB的长,最后根据圆环的面积公式进行计算即可求解.
此题综合运用了切线的性质定理、垂径定理、圆环的面积公式.注意:圆环的面积=
π
4
AB
2
(AB是相切于小圆的大圆的弦).
压轴题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )