试题
题目:
(2002·武汉)已知Rt△ABC中,∠C=90°,O为斜边AB上的一点,以O为圆心的圆与边AC,BC分别相切于点E,F,若AC=1,BC=3,则⊙O的半径为( )
A.
1
2
B.
2
3
C.
3
4
D.
4
5
答案
C
解:如图,连接OE,OF,
设圆的半径为R,
∴OE=OF=R,
∵以O为圆心的圆与边AC,BC分别相切于点E,F,
∴四边形CEOF是正方形,
∴OF∥AC,
∴△OBF∽△ABC,
∴OF:AC=FB:BC,
∴BF=3R,
同理,AE=
1
3
R,
由勾股定理得,AO=
10
3
R,BO=
10
R,AB=
10
,
∵AO+BO=AB,
∴R=
3
4
.
故选C.
考点梳理
考点
分析
点评
切线的性质;勾股定理;相似三角形的判定与性质.
如图,连接OE,OF,设圆的半径为R,OE=OF=R,根据已知条件可以推出则四边形AFOE是正方形,从而得到OF∥AC,可得△OBF∽△ABC,可得OF:AC=FB:BC,由此可以把BF用R表示,同理AE也可以用R表示,然后由勾股定理得,AO=
10
3
R,BO=
10
R,AB=
10
,由此即可求出R.
本题利用了切线的性质,相似三角形的判定与性质,勾股定理求解,有一定的难度.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )