试题
题目:
(2011·成华区二模)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点B、C分别在坐标轴上,
过点M(0,6)和N(-3,0)的直线分别与AB、AC交于点D、E,已知AB=2,AC=4.
(1)求直线MN解析式和点D的坐标;
(2)若反比例函数
y=
m
x
(x<0)
的图象经过点D,求此函数的解析式,并通过计算判断点是E否在该函数图象上?
答案
解:(1)设直线MN的解析式为y=kx+b,
将M(0,6)和N(-3,0)分别代入解析式得,
b=6
-3k+b=0
,
解得,
k=2
b=6
,
函数解析式为y=2x+6.
∵AC=4,
∴在矩形OABC中,OB=4,
∴B点纵坐标为4,
将y=4代入y=2x+6得,
2x+6=4,
解得x=-1,
故D点坐标为(-1,4).
(2)将(-1,4)代入反比例函数
y=
m
x
(x<0)
得,
m=-1×4=-4,
则反比例函数解析式为y=-
4
x
.
在矩形ACOB中,
CO=AB=2,
C点坐标为(-2,0),
则E点横坐标为-2,
当x=-2时,y=2×(-2)+6=2,
可得,E点坐标为(-2,2),
将E(-2,2)代入y=-
4
x
得,2=-
4
-2
,
故点E在函数图象上.
解:(1)设直线MN的解析式为y=kx+b,
将M(0,6)和N(-3,0)分别代入解析式得,
b=6
-3k+b=0
,
解得,
k=2
b=6
,
函数解析式为y=2x+6.
∵AC=4,
∴在矩形OABC中,OB=4,
∴B点纵坐标为4,
将y=4代入y=2x+6得,
2x+6=4,
解得x=-1,
故D点坐标为(-1,4).
(2)将(-1,4)代入反比例函数
y=
m
x
(x<0)
得,
m=-1×4=-4,
则反比例函数解析式为y=-
4
x
.
在矩形ACOB中,
CO=AB=2,
C点坐标为(-2,0),
则E点横坐标为-2,
当x=-2时,y=2×(-2)+6=2,
可得,E点坐标为(-2,2),
将E(-2,2)代入y=-
4
x
得,2=-
4
-2
,
故点E在函数图象上.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
(1)设函数解析式为y=kx+b,将M(0,6)和N(-3,0)分别代入解析式,组成方程组,分别求出k、b的值,从而求出一次函数解析式;求出D点纵坐标,代入一次函数解析式,即可求出D点横坐标,从而得到D点坐标.
(2)根据C点横坐标和矩形的性质,求出E点的横坐标,将E点横坐标代入一次函数解析式即可得到E点纵坐标,将E点坐标代入解析式,即可判断出E是否在函数图象上.
本题考查了反比例函数综合题,涉及待定系数法求一次函数和反比例函数解析式、矩形的性质、函数图象上点的坐标特征等知识,综合性较强.
计算题.
找相似题
(2013·重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数
y=
k
x
(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:
①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,
2
+1
).
其中正确结论的个数是( )
(2013·镇江)如图,A、B、C是反比例函数
y=
k
x
(x<0)
图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )
(2013·临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线
y=
3
x
在第一象限内的图象经过OB边的中点C,则点B的坐标是( )
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )