试题
题目:
(2012·南关区模拟)如图,矩形ABCO(OA>OC)的两边分别在x轴的负半轴和y轴的正半轴上,点B在反比例函数y=-
8
x
(x<0)的图象上,且OC=2.将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,反比例函数y=
k
x
(x<0)的图象经过点E.
(1)求k的值;
(2)判断线段BE的中点M是否在反比例函数y=
k
x
(x<0)的图象上,请说明理由.
答案
解:(1)∵点B在反比例函数y=-
8
x
(x<0)的图象上,且OC=2,
∴B(-2,4),
∴OA=4,
∵将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,
∴E(-6,2).
∵反比例函数y=
k
x
(x<0)的图象经过点E,
∴k=-6×2=-12;
(2)∵B(-2,4),E(-6,2),
∴M(-4,3),
∵-4×3=-12,
∴线段BE的中点M在反比例函数y=-
12
x
(x<0)的图象上.
解:(1)∵点B在反比例函数y=-
8
x
(x<0)的图象上,且OC=2,
∴B(-2,4),
∴OA=4,
∵将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,
∴E(-6,2).
∵反比例函数y=
k
x
(x<0)的图象经过点E,
∴k=-6×2=-12;
(2)∵B(-2,4),E(-6,2),
∴M(-4,3),
∵-4×3=-12,
∴线段BE的中点M在反比例函数y=-
12
x
(x<0)的图象上.
考点梳理
考点
分析
点评
反比例函数综合题.
(1)首先根据反比例函数y=-
8
x
且OC=2可得到B点坐标,再根据旋转的方法可得到E点坐标,再根据反比例函数图象上点的坐标特点可算出k的值;
(2)首先根据B、E两点坐标可得到BE的中点坐标,再根据反比例函数图象上点的坐标特点可判断出点M是否在反比例函数y=
k
x
(x<0)的图象上.
此题主要考查了反比例函数的综合应用,关键是掌握凡是反比例函数图象上的点,横纵坐标的积=k.
找相似题
(2013·重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数
y=
k
x
(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:
①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,
2
+1
).
其中正确结论的个数是( )
(2013·镇江)如图,A、B、C是反比例函数
y=
k
x
(x<0)
图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )
(2013·临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线
y=
3
x
在第一象限内的图象经过OB边的中点C,则点B的坐标是( )
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )