试题
题目:
(2012·莆田质检)如图,在矩形OABC中,OA、OC两边分别在x轴、y轴的正半轴上,OA=3,OC=2,过OA边上的D点,沿着BD翻折△ABD,点A恰好落在BC边上的点E处,反比例函数
y=
k
x
(k>0)在第一象限上的图象经过点E与BD相交于点F.
(1)求证:四边形ABED是正方形;
(2)点F是否为正方形ABED的中心?请说明理由.
答案
解:(1)∵四边形OABC是矩形,
∴BC=OA=3、AB=OC=2,∠DAB=∠ABE=90°,
∵△BED是由△ABD沿着BD翻折得到的,
∴∠BED=∠DAB=90°,BA=BE,
∴四边形ABED是正方形;
(2)F点是正方形ABED的中心.理由如下:
过F作FH⊥x轴于H,如图,
∵四边形ABED是正方形,
∴BE=BA=2,CE=BC-BE=3-2=1,
∴E(1,2),
∴k=1×2=2,
∴反比例函数解析式为y=
2
x
,
∵D(1,0)、B(3,2),
设直线BD的解析式为y=kx+b,
把D(1,0)、B(3,2)代入得k+b=0,3k+b=2,
解得k=1,b=-1,
∴直线BD的解析式为y=x-1,
解方程组
y=
2
x
y=x-1
得
x=-1
y=-2
或
x=2
y=1
,
∴F点的坐标为(2,1),
∵D(1,0)、B(3,2),
∴BD的中点坐标为(2,1)
∴F点是正方形ABED的中心.
解:(1)∵四边形OABC是矩形,
∴BC=OA=3、AB=OC=2,∠DAB=∠ABE=90°,
∵△BED是由△ABD沿着BD翻折得到的,
∴∠BED=∠DAB=90°,BA=BE,
∴四边形ABED是正方形;
(2)F点是正方形ABED的中心.理由如下:
过F作FH⊥x轴于H,如图,
∵四边形ABED是正方形,
∴BE=BA=2,CE=BC-BE=3-2=1,
∴E(1,2),
∴k=1×2=2,
∴反比例函数解析式为y=
2
x
,
∵D(1,0)、B(3,2),
设直线BD的解析式为y=kx+b,
把D(1,0)、B(3,2)代入得k+b=0,3k+b=2,
解得k=1,b=-1,
∴直线BD的解析式为y=x-1,
解方程组
y=
2
x
y=x-1
得
x=-1
y=-2
或
x=2
y=1
,
∴F点的坐标为(2,1),
∵D(1,0)、B(3,2),
∴BD的中点坐标为(2,1)
∴F点是正方形ABED的中心.
考点梳理
考点
分析
点评
反比例函数综合题.
(1)∵四边形OABC是矩形,则BC=OA=3、AB=OC=2,∠DAB=∠ABE=90°,根据翻折的性质得到∠BED=∠DAB=90°,BA=BE,然后根据正方形的判定即可得到结论;
(2)过F作FH⊥x轴于H,根据正方形的性质得BE=BA=2,CE=BC-BE=3-2=1,得到E(1,2),则反比例函数解析式为y=
2
x
,利用待定系数法可求得直线BD的解析式为y=x-1,然后解方程组
y=
2
x
y=x-1
得到F点的坐标为(2,1),而BD的中点坐标为(2,1),即可得到结论.
本题考查了反比例函数综合题:反比例函数y=
k
x
上的点的横纵坐标之积为k;运用待定系数法求函数的解析式;运用正方形的判定与性质解决问题;掌握翻折的性质.
找相似题
(2013·重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数
y=
k
x
(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:
①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,
2
+1
).
其中正确结论的个数是( )
(2013·镇江)如图,A、B、C是反比例函数
y=
k
x
(x<0)
图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )
(2013·临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线
y=
3
x
在第一象限内的图象经过OB边的中点C,则点B的坐标是( )
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )