反比例函数综合题.
(1)过A作AC⊥OB,根据三角形AOB为等腰直角三角形,得到AC=OC=BC=
OB,确定出A坐标,代入反比例解析式求出k的值,即可确定出反比例解析式;
(2)过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对直角相等,且AO=AB,利用AAS得出三角形AOE与三角形ABD全等,由确定三角形的对应边相等得到BD=AE=n,AD=OE=m,进而表示出ED及OE+BD的长,即可表示出B坐标;
(3)由A与B都在反比例图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出
的值.
此题属于反比例函数综合题,涉及的知识有:全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及一元二次方程的解法,熟练掌握反比例函数的性质是解本题的关键.
综合题.