试题
题目:
(2005·呼和浩特)如图,已知反比例函数y=
k
x
的图象经过点A(-
3
,b),过点A作AB⊥x轴,垂
足为点B,△AOB的面积为
3
.
(1)求k和b的值;
(2)若一次函数y=ax+1的图象经过点A,并且与x轴相交于点M,求OA:OM.
答案
解:(1)根据题意得:
1
2
×
3
b=
3
,b=2,
∴A(-
3
,2)因为反比例函数y=
k
x
的图象经过点A,
∴k=-2
3
;
(2)
7
:
3
.
∵一次函数y=ax+1的图象经过点A,
∴-
3
a+1=2,a=-
3
3
,函数解析式为y=-
3
3
x+1,
当y=0时,x=
3
,即OM=
3
,
在Rt△AOB中,OA=
7
,
∴OA:OM=
7
:
3
.
解:(1)根据题意得:
1
2
×
3
b=
3
,b=2,
∴A(-
3
,2)因为反比例函数y=
k
x
的图象经过点A,
∴k=-2
3
;
(2)
7
:
3
.
∵一次函数y=ax+1的图象经过点A,
∴-
3
a+1=2,a=-
3
3
,函数解析式为y=-
3
3
x+1,
当y=0时,x=
3
,即OM=
3
,
在Rt△AOB中,OA=
7
,
∴OA:OM=
7
:
3
.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
(1)根据点A(-
3
,b)知OB=
3
,由△AOB的面积为
3
求出b,再由A点坐标求出k;
(2)由一次函数y=ax+1的图象经过点A求出a,得函数解析式,再求M的坐标,得OM的长;在△AOB中求OA的长,最后求比值.
此题重在检测函数解析式的求法及交点的求法.解答本题时同学们要结合图象,正确解答.
待定系数法.
找相似题
(2013·重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数
y=
k
x
(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:
①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,
2
+1
).
其中正确结论的个数是( )
(2013·镇江)如图,A、B、C是反比例函数
y=
k
x
(x<0)
图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )
(2013·临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线
y=
3
x
在第一象限内的图象经过OB边的中点C,则点B的坐标是( )
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )