试题

题目:
(2005·梅州)如图,已知C、D是双曲线y=
m
x
在第一象限分支上的两点,直线CD分别交x轴、y轴于A、B两点.设C(x1青果学院y1)、D(x2,y2),连接OC、OD(O是坐标有点),若∠BOC=∠AOD=α,且tanα=
1
3
,OC=
10

(1)求C、D的坐标和m的值;
(2)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明,若不存在,说明理由.
答案
解:(1)过点C作CG⊥x轴于G,
则CG=y1,OG=x1
在Rt△OCG中,∠GCO=∠BOC=α,
∵tanα=
OG
CG
=
1
3

x2
x1
=
1
3

即y1=3x1
又∵OC=
10

∴x12+y12=10,青果学院
即x12+(3x12=10,
解得:x1=1或x1=-1(不合题意舍去)
∴x1=1,y1=3,
∴点C的坐标为C(1,3).
又点C在双曲线上,可得:m=3,
过D作DH⊥x轴于H,则DH=y2,OH=x2
在Rt△ODH中,tanα=
DH
OH
=
1
3

y2
x2
=
1
3

即x2=3y2
又∵x2y2=3,
∴y2=1或y2=-1(不合舍去),
∴x2=3,y2=1,
∴点D的坐标为D(3,1);

(2)双曲线上存在点P,使得S△POC=S△POD
这个点就是∠COD的平分线与双曲线的y=
3
x
交点
∵点D(3,1),
∴OD=
10

∴OD=OC,
∴点P在∠COD的平分线上,
则∠COP=∠POD,又OP=OP
∴△POC≌△POD,
∴S△POC=S△POD
解:(1)过点C作CG⊥x轴于G,
则CG=y1,OG=x1
在Rt△OCG中,∠GCO=∠BOC=α,
∵tanα=
OG
CG
=
1
3

x2
x1
=
1
3

即y1=3x1
又∵OC=
10

∴x12+y12=10,青果学院
即x12+(3x12=10,
解得:x1=1或x1=-1(不合题意舍去)
∴x1=1,y1=3,
∴点C的坐标为C(1,3).
又点C在双曲线上,可得:m=3,
过D作DH⊥x轴于H,则DH=y2,OH=x2
在Rt△ODH中,tanα=
DH
OH
=
1
3

y2
x2
=
1
3

即x2=3y2
又∵x2y2=3,
∴y2=1或y2=-1(不合舍去),
∴x2=3,y2=1,
∴点D的坐标为D(3,1);

(2)双曲线上存在点P,使得S△POC=S△POD
这个点就是∠COD的平分线与双曲线的y=
3
x
交点
∵点D(3,1),
∴OD=
10

∴OD=OC,
∴点P在∠COD的平分线上,
则∠COP=∠POD,又OP=OP
∴△POC≌△POD,
∴S△POC=S△POD
考点梳理
反比例函数综合题.
(1)过点C作CG⊥x轴于G,在直角△OCG中,已知tanα=
1
3
,OC=
10
,就可以求出CG,OQ的长,就得到C点的坐标.根据待定系数法得到反比例函数的解析式.过D作DH⊥x轴于H,则DH=y2,OH=x2,在Rt△ODH中,tanα=
DH
OH
=
1
3
,∴
x2
y2
=
1
3
,即y2=3x2,由x2y2=3解得DH的长,进而求出OH,得到D点的坐标.
(2)双曲线上存在点P,使得S△POC=S△POD,这个点就是∠COD的平分线与双曲线的y=
3
x
交点,易证△POC≌△POD,则S△POC=S△POD
本题主要是根据勾股定理和三角函数的定义解决问题,通过它们把结论转化为方程的问题来解题.
压轴题;开放型.
找相似题