试题
题目:
(2008·德阳)如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于A(-2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
答案
解:(1)把A(-2,1)代入y=
m
x
,得m=-2,
即反比例函数为y=-
2
x
,则n=
-2
1
·
n=-2,
即B(1,-2),把A(-2,1),B(1,-2)代入y=kx+b,
求得k=-1,b=-1,所以y=-x-1;
(2)由图象可知:x<-2或0<x<1.
解:(1)把A(-2,1)代入y=
m
x
,得m=-2,
即反比例函数为y=-
2
x
,则n=
-2
1
·
n=-2,
即B(1,-2),把A(-2,1),B(1,-2)代入y=kx+b,
求得k=-1,b=-1,所以y=-x-1;
(2)由图象可知:x<-2或0<x<1.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
(1)由A的坐标易求反比例函数解析式,从而求B点坐标,进而求一次函数的解析式;
(2)观察图象,看在哪些区间一次函数的图象在上方.
本题考查了反比例函数与一次函数的综合应用,重点是用待定系数法求得函数的解析式,同学们要好好掌握.
压轴题;待定系数法.
找相似题
(2013·重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数
y=
k
x
(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:
①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,
2
+1
).
其中正确结论的个数是( )
(2013·镇江)如图,A、B、C是反比例函数
y=
k
x
(x<0)
图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )
(2013·临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线
y=
3
x
在第一象限内的图象经过OB边的中点C,则点B的坐标是( )
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )