试题
题目:
(2013·厦门质检)某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人.
(1)求第一轮后患病的人数;(用含x的代数式表示)
(2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.
答案
解:(1)(1+x)人,
(2)设在每轮传染中一人将平均传给x人
根据题意得:x-1+x(x-1)=21
整理得:x
2
-1=21
解得:
x
1
=
22
,
x
2
=-
22
∵x
1
,x
2
都不是正整数,
∴第二轮传染后共会有21人患病的情况不会发生.
解:(1)(1+x)人,
(2)设在每轮传染中一人将平均传给x人
根据题意得:x-1+x(x-1)=21
整理得:x
2
-1=21
解得:
x
1
=
22
,
x
2
=-
22
∵x
1
,x
2
都不是正整数,
∴第二轮传染后共会有21人患病的情况不会发生.
考点梳理
考点
分析
点评
专题
一元二次方程的应用.
(1)设每轮传染中平均每人传染了x人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了x人,则第一轮后共有(1+x)人患了流感;
(2)第二轮传染中,这些人中的每个人又传染了x人,因进入第二轮传染之前,有两位患者被及时隔离并治愈,则第二轮后共有x-1+x(x-1)人患了流感,而此时患流感人数为21,根据这个等量关系列出方程若能求得正整数解即可会有21人患病.
本题考查了一元二次方程的应用,解题的关键是能根据进入第二轮传染之前,有两位患者被及时隔离并治愈列出方程并求解.
应用题.
找相似题
(2013·天水)从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m
2
,则原来这块木板的面积是( )
(2011·台湾)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为
21
4
平方公分,则此方格纸的面积为多少平方公分?( )
(2011·黄石)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定21条直线.则n的值为( )
(2010·鄂州)庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有( )队参加比赛.
(2010·毕节地区)毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为( )