试题
题目:
我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.问一次卖多少只获得的利润为120元?
答案
解:设每次卖x只,所获得的利润为120元,
x[20-13-0.1(x-10)]=120
x
2
-80x+1200=0
x=20或x=60(舍去).
因为最多降价到16元,所以50舍去.
故卖20只时利润可达到120.
解:设每次卖x只,所获得的利润为120元,
x[20-13-0.1(x-10)]=120
x
2
-80x+1200=0
x=20或x=60(舍去).
因为最多降价到16元,所以50舍去.
故卖20只时利润可达到120.
考点梳理
考点
分析
点评
一元二次方程的应用.
设每次卖x只,所获得的利润为120元,根据我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,可列方程求解.
本题考查理解题意的能力,关键是看到售出和利润的关系,从而列方程求出解.
找相似题
(2013·天水)从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m
2
,则原来这块木板的面积是( )
(2011·台湾)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为
21
4
平方公分,则此方格纸的面积为多少平方公分?( )
(2011·黄石)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定21条直线.则n的值为( )
(2010·鄂州)庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有( )队参加比赛.
(2010·毕节地区)毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为( )