试题

题目:
“坡耕地退耕还林还草”是国家对解决西部地区水土流失生态问题,帮助广大农民脱贫致富提出的一项战略措施,某村村长带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范,1999年将自家的坡耕地全部退耕,并于当年承包20亩坡耕地的还林还草及管护任务,并按一定比例逐年增长,到2001年村长承包28.8亩的坡耕地的还林还草及管护任务,该村有30户人家,如果每户均以村长的行为为标准,则全村这三年可完成坡耕地的还林还草任务
2184
2184
亩,如果国家按每亩坡耕地230元给予补助,则仅2001年一年国家将对该村投入补助资金
19.872
19.872
万元.
答案
2184

19.872

解:设每一年的增长率为x.
20(1+x)2=28.8
x=20%或x=-220%(舍去)
2000年的产量为20(1+20%)=24
(20+24+28.8)×30=2184(亩)
28.8×30×230=198720=19.872(万元)
故答案为2184;19.872.
考点梳理
一元二次方程的应用.
可看出此题是一个增长率问题,可设每一年的增长率为x,求出增长率就可以求出2000年的坡耕地退耕还林还草的亩数,求出三年一家的总亩数,也就可以求出总亩数.知道2001年一家的28.8亩,那么30家就为30×28.8,每亩钱数知道,总钱数也就可求.
本题考查的是一个增长率问题.关键是求出2000年每家的还原亩数其他根据题意就可以求出来了.
应用题;阅读型.
找相似题