试题
题目:
(2013·滨湖区二模)如图,已知点A是双曲线y=
3
x
在第一象限上的一动点,连接AO,以OA为一边作等腰直角三角形AOB(∠AOB=90°),点B在第四象限,随着点A的运动,点B的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为
y=-
3
x
y=-
3
x
.
答案
y=-
3
x
解:设点B所在反比例函数的解析式为y=
k
x
(k≠0),分别过点AB作AD⊥x轴于点D,BE⊥x轴于点E,
∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
∴∠OAD=∠BOE,
同理可得∠AOD=∠OBE,
∵在Rt△AOD与Rt△OBE中,
∠OAD=∠BOE
OA=OB
∠AOD=∠OBE
,
∴Rt△AOD≌Rt△OBE(ASA),
∵点B在第二象限,
∴OE·BE=-AD·OD,即k=-3,
∴反比例函数的解析式为:y=-
3
x
.
故答案为:y=-
3
x
.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
设点B所在反比例函数的解析式为y=
k
x
(k≠0),分别过点AB作AD⊥x轴于点D,BE⊥x轴于点E,由全等三角形的判定定理可知Rt△AOD≌Rt△OBE,故可得出OE·BE=-AD·OD,再根据点A在双曲线y=
3
x
上即可得出结论.
本题考查的是反比例函数综合题,熟知反比例函数y=
k
x
(k≠0)中,k=xy为定值是解答此题的关键.
探究型.
找相似题
(2013·重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数
y=
k
x
(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:
①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,
2
+1
).
其中正确结论的个数是( )
(2013·镇江)如图,A、B、C是反比例函数
y=
k
x
(x<0)
图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )
(2013·临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线
y=
3
x
在第一象限内的图象经过OB边的中点C,则点B的坐标是( )
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )