反比例函数综合题.
首先过点A作AH⊥x轴于点H,过点C作CF⊥OA于点F,易得△AOH∽△COF,然后由相似三角形的对应边成比例,即可求得OC的长,即可得点C的坐标;
由∠BED=∠AOC,AC=OC,易证得△ABE∽△OED,由A与C的坐标,可求得直线AC与反比函数的解析式,继而求得点B的坐标,即可求得AB的长,然后设AE=x,由相似三角形的对应边成比例,可得方程:x
2-
x+
m=0,然后由判别式△>0,求得m的取值范围.
此题考查了待定系数法求一次函数与反比例函数的解析式、相似三角形的判定与性质、等腰三角形的性质、三角形外角的性质以及判别式的性质.此题难度较大,注意掌握数形结合思想与方程思想的应用.
探究型.