试题
题目:
如图所示,正比例函数y=x与反比例函数
y=
k
x
(k>0)的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,连接AD、BC,则四边形ABCD的面积为( )
A.2.5k
B.2k
C.1.5k
D.k
答案
B
解:根据反比例函数的对称性可知:OB=OD,AB=CD,
∵四边形ABCD的面积等于S△ADB+S△BDC,
∵A(x,
k
x
),B(x,0),C(-x,-
k
x
),D(-x,0)
∴S△ADB=
1
2
(DO+OB)×AB=
1
2
×2x×
k
x
=k,
S△BDC=
1
2
(DO+OB)×DC=
1
2
×2x×
k
x
=k,
∴四边形ABCD的面积=2k.
故选B.
考点梳理
考点
分析
点评
反比例函数综合题.
首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=
1
2
|k|,得出S
△AOB
=S
△ODC
=
|k|
2
,再根据反比例函数的对称性可知:OB=OD,得出S
△ADB
+S
△BDC
得出结果.
主要考查了反比例函数y=kx中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=
1
2
|k|.
找相似题
(2013·重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数
y=
k
x
(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:
①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,
2
+1
).
其中正确结论的个数是( )
(2013·镇江)如图,A、B、C是反比例函数
y=
k
x
(x<0)
图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )
(2013·临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线
y=
3
x
在第一象限内的图象经过OB边的中点C,则点B的坐标是( )
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )