试题
题目:
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.
答案
证明:∵AF∥BC,
∴∠AFE=∠DCE,
又∵E为AD的中点,
∴AE=DE,
在△AFE和△DCE中,
∠AFE=∠DCE,∠FEA=∠DEC(对顶角相等),AE=ED,
∴△AFE≌△DCE(AAS),
∴AF=DC,
而AF=BD,
∴BD=DC,
即D是BC的中点.
证明:∵AF∥BC,
∴∠AFE=∠DCE,
又∵E为AD的中点,
∴AE=DE,
在△AFE和△DCE中,
∠AFE=∠DCE,∠FEA=∠DEC(对顶角相等),AE=ED,
∴△AFE≌△DCE(AAS),
∴AF=DC,
而AF=BD,
∴BD=DC,
即D是BC的中点.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
根据平行线的性质得到∠AFE=∠DCE,由中点的定义得到AE=DE,根据三角形全等的判定易证得△AFE≌△DCE,利用全等三角形的性质得AF=DC,而AF=BD,即可得到D是BC的中点.
本题考查了全等三角形的判定与性质:有两组对应角相等,且一组对应角所对的边对应相等的两个三角形全等;全等三角形的对应边相等.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )