试题
题目:
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
A.0.8
B.1
C.1.5
D.4.2
答案
A
解:∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
∠E=∠ADC
∠EBC=∠DCA
BC=AC
,
∴△CEB≌△ADC(AAS),
∴BE=DC.CE=AD=2.5.
∵DC=CE-DE,DE=1.7cm,
∴DC=2.5-1.7=0.8.
故选A.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出BE的值.
本题考查了垂直的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )
(2012·柳州一模)如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是( )