试题
题目:
(2012·老河口市模拟)已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.
求证:DE=AC.
答案
证明:∵AD∥BC,
∴∠DAE=∠1.
∵AE=AB,
∴∠1=∠B.
∴∠B=∠DAE.
又AD=BC,
∴△ABC≌△AED.
∴DE=AC.
证明:∵AD∥BC,
∴∠DAE=∠1.
∵AE=AB,
∴∠1=∠B.
∴∠B=∠DAE.
又AD=BC,
∴△ABC≌△AED.
∴DE=AC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;平行线的性质.
本题可考虑结论涉及的线段DE、AC放到△ABC和△AED中证明全等,已知AD=BC,AE=AB,只需要证明夹角相等,用AD∥BC可推出需要的条件.
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )