试题

题目:
青果学院(2012·张家口一模)如图,已知△ABC中,∠ABC=45°,AD是BC边上的高,
(1)尺规作图:在∠ABC的内部作∠CBM,使得∠CBM=∠DAC(要求:只保留作图痕迹,不写作法和证明);
(2)若射线BM与AC交于点E,与AD交于点F,且CD=3,试求线段DF的长.
答案
青果学院解:(1)作图如图1:

(2)如图2:
∵AD⊥BC,∠ABC=45°
∴∠1=∠ABC=45°
∴AD=BD
在△BDF和△ADC中
∠2=∠3
BD=AD
∠BDF=∠ADC

∴△BDF≌△ADC(ASA)
∴DF=DC=3
青果学院解:(1)作图如图1:

(2)如图2:
∵AD⊥BC,∠ABC=45°
∴∠1=∠ABC=45°
∴AD=BD
在△BDF和△ADC中
∠2=∠3
BD=AD
∠BDF=∠ADC

∴△BDF≌△ADC(ASA)
∴DF=DC=3
考点梳理
作图—复杂作图;全等三角形的判定与性质.
(1)作∠CBM=∠ADE,其中BM交AC于E、AD于F;
(2)根据等腰直角三角形的性质可得AD=BD,由ASA可证△BDF≌△ADC,再根据全等三角形的性质求解.
综合考查了角的作图,全等三角形的判定和性质的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
找相似题