试题
题目:
如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.
请推导下列结论:
(1)∠D=∠B;
(2)AE∥CF.
答案
解:(1)∵在△ADE和△CBF中
AE=CF
AD=BC
DE=BF
∴△ADE≌△CBF(SSS),
∴∠D=∠B.
(2)∵△ADE≌△CBF,
∴∠AED=∠CFB,
∵∠AED+∠AEO=180°,∠CFB+∠CFO=180°,
∴∠AEO=∠CFO,
∴AE∥CF.
解:(1)∵在△ADE和△CBF中
AE=CF
AD=BC
DE=BF
∴△ADE≌△CBF(SSS),
∴∠D=∠B.
(2)∵△ADE≌△CBF,
∴∠AED=∠CFB,
∵∠AED+∠AEO=180°,∠CFB+∠CFO=180°,
∴∠AEO=∠CFO,
∴AE∥CF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)根据SSS推出△ADE≌△CBF,根据全等三角形的性质推出即可.
(2)根据全等三角形的性质推出∠AED=∠CFB,求出∠AEO=∠CFO,根据平行线的判定推出即可.
本题考查了全等三角形的性质和判定,平行线的判定的应用,注意:全等三角形的对应角相等.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )