试题

题目:
如图1:在△ABC中,∠ABC=45°,H是高AD和BE的交点,
(1)求证:BH=AC.
(2)如图2,当∠A=90°,其他条件不变,结论BH=AC还成立吗?得出结论,不必证明.
(3)当∠A为钝角时,如图3,其他条件不变,此时结论BH=AC还成立吗?若成立,请证明,若不成立,请说明理由.
青果学院
答案
青果学院(1)证明:∵∠DAC+∠C=90°,∠EBC+∠C=90°,
∴∠DAC=∠EBC,
∵∠ABC=45°,
∴△ABD是等腰直角三角形.
∴AD=BD.
在Rt△BDH和Rt△ADC中:
∠ADC=∠ADB
AD=BD
∠DAC=∠CBE

∴Rt△BDH≌Rt△ADC.(ASA)
∴BH=AC.


(2)解:当∠A=90°,其他条件不变,结论BH=AC还成立,
此时BH与AB重合,进而得出BH=AC;

(3)解:如图,HB=AC仍然成立.
证明:∵∠H+∠HAE=90°,∠C+∠CAD=90°,
又∵∠HAE=∠DAC,
∴∠H=∠C.
∵∠ABC=45°,∠ADB=90°,
∴三角形ABD是等腰直角三角形.
∴AD=BD.
又∵∠BDH=∠ADC,
∴Rt△BDH≌Rt△ADC(AAS).
∴BH=AC.
青果学院(1)证明:∵∠DAC+∠C=90°,∠EBC+∠C=90°,
∴∠DAC=∠EBC,
∵∠ABC=45°,
∴△ABD是等腰直角三角形.
∴AD=BD.
在Rt△BDH和Rt△ADC中:
∠ADC=∠ADB
AD=BD
∠DAC=∠CBE

∴Rt△BDH≌Rt△ADC.(ASA)
∴BH=AC.


(2)解:当∠A=90°,其他条件不变,结论BH=AC还成立,
此时BH与AB重合,进而得出BH=AC;

(3)解:如图,HB=AC仍然成立.
证明:∵∠H+∠HAE=90°,∠C+∠CAD=90°,
又∵∠HAE=∠DAC,
∴∠H=∠C.
∵∠ABC=45°,∠ADB=90°,
∴三角形ABD是等腰直角三角形.
∴AD=BD.
又∵∠BDH=∠ADC,
∴Rt△BDH≌Rt△ADC(AAS).
∴BH=AC.
考点梳理
全等三角形的判定与性质.
(1)可通过全等三角形来证BH=AC,那么关键是证三角形ADC和BDH全等.已知的条件有一组直角,∠DAC和∠EBC都是∠C的余角,因此也相等,只要再证得一组对应边相等即可得出结论.我们发现∠ABC=45°,因此三角形ABD是等腰直角三角形,因此AD=BD,这样两三角形全等的所有条件就都凑齐了,即可得出BH=AC的结论.
(2)根据当∠A=90°,其他条件不变,BH与AB重合,进而得出BH=AC;
(3)同(1)的方法完全相同,也是通过证明三角形HBD和ADC全等来证得.
此题考查了全等三角形的判定与性质.解答该题时,围绕结论寻找全等三角形,运用全等三角形的性质判定对应线段相等得出是解题关键.
找相似题