题目:

先填写完成第(1)小题中的空缺部分(数学表达式或理由),再按要求解答第(2)小题.
如图:AD=CB,AE⊥BD,CF⊥BD,垂足分别是E、F,DF=BE.
(1)求证:∠D=∠B;
(2)请你连结AB、CD,探究AB与CD有何位置关系?并证明你的结论.
证明:(1)∵AE⊥BD,CF⊥BD,
∴∠AED=∠
CFB
CFB
=90°,
∵DF=BE,
∴DF-
EF
EF
=BE-
EF
EF
,
即DE=BF.
在Rt△ADE和Rt△CBF中,
方程组:
∴Rt△ADE≌Rt△CBF
HL
HL
,
∴∠D=∠B
全等三角形的对应角相等
全等三角形的对应角相等
.
(2)