试题
题目:
(2005·河北)已知:如图,D是△ABC的边AB上一点,AB∥FC,DF交AC于点E,DE=EF.
求证:AE=CE.
答案
证明:∵AB∥FC,
∴∠ADE=∠CFE,
在△AED和△CEF中,
∠ADE=∠CFE,
DE=FE,
∠AED=∠CEF,
∴△AED≌△CEF(ASA),
∴AE=CE.
证明:∵AB∥FC,
∴∠ADE=∠CFE,
在△AED和△CEF中,
∠ADE=∠CFE,
DE=FE,
∠AED=∠CEF,
∴△AED≌△CEF(ASA),
∴AE=CE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
此题根据已知条件及对顶角相等的知识先证得△AED≌△CEF,则易求证AE=CE.
主要考查了全等三角形的判定定理和性质;由平行线得到内错角相等是解决本题的突破口,做题时注意运用.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )