试题
题目:
(2007·陇南)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.
解:需添加条件是
BD=CD,或BE=CF
BD=CD,或BE=CF
.
答案
BD=CD,或BE=CF
解:需添加的条件是:BD=CD,或BE=CF.
添加BD=CD的理由:
如图,∵AB=AC,
∴∠B=∠C.
又∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°.
∴△BDE≌△CDF(AAS).
∴DE=DF.
添加BE=CF的理由:
如图,∵AB=AC,
∴∠B=∠C.
∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD.
又∵BE=CF,
∴△BDE≌△CDF(ASA).
∴DE=DF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
证明题;开放型.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )