试题
题目:
(2009·上海)已知线段AC与BD相交于点O,连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如图所示).
(1)添加条件∠A=∠D,∠OEF=∠OFE,求证:AB=DC.
(2)分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是
命题,命题2是
命题(选择“真”或“假”填入空格).
答案
证明:(1)∵E为OB的中点,F为OC的中点,
∴OB=2OE,OC=2OF.
∵∠OEF=∠OFE,
∴OE=OF.
∴OB=OC.
在△AOB与△DOC中,
∠A=∠D,∠AOB=∠DOC,OB=OC,
∴△AOB≌△DOC(AAS).
∴AB=DC.
(2)对于命题1,可证△AOB≌△DOC得到OB=OC,再得OE=OF,从而能得到∠OEF=∠OFE,故其是真命题;
对于命题2,由所给的条件不能证明△AOB≌△DOC,因此其是假命题.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)要证AB=DC,可考虑证△AOB≌△DOC.
(2)根据已知及全等三角形的判定方法对两个命题进行分析,从而判断其真假.
本题考查的是全等三角形的判定,要牢记全等三角形的判定条件,要记住SSA和AAA是不能证得两三角形全等的.
证明题;开放型.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )