试题
题目:
完成推理填空:如图所示,已知AD=BC,AB=DC,试判断∠A与∠ABC的关系.下面是小颖同学的推导过程:
解:连接BD.在△ABD与△CDB中
∵AD=CB (已知)
AB=CD (已知)
BD=DB (
公共边
公共边
)
∴△ABD≌△CDB (
SSS
SSS
)
∴∠1=∠2 (
两个三角形全等,对应角相等
两个三角形全等,对应角相等
)
∴AD∥BC (
内错角相等,两直线平行
内错角相等,两直线平行
)
∴∠A+∠ABC=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)
答案
公共边
SSS
两个三角形全等,对应角相等
内错角相等,两直线平行
两直线平行,同旁内角互补
解:连接BD.
在△ABD与△CDB中
∵AD=CB,AB=CD,BD=DB(公共边),
∴△ABD≌△CDB(SSS);
∴∠1=∠2(两个三角形全等,对应角相等),
∴AD∥BC (内错角相等,两直线平行),
∴∠A+∠ABC=180°(两直线平行,同旁内角互补).
故答案为:公共边;SSS;两个三角形全等,对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
连接BD.在△ABD与△CDB中,根据全等三角形的判定定理SSS证明△ABD≌△CDB,然后由全等三角形的性质(对应角相等)知∠1=∠2;最后由平行线的判定定理(内错角相等,两直线平行)与性质(两直线平行,同旁内角互补)来求∠A与∠ABC的关系.
本题主要考查了全等三角形的判定与性质.解答此题时,通过构建全等三角形将已知和所求条件转化到相关的平行线中是解题的关键.
推理填空题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )