试题
题目:
在△ABC中,AB=AC,AD平分∠BAC,求证:AD⊥BC.
答案
证明:∵AD平分∠BAC,
∴∠BAD=∠CAD,
在△BAD和△CAD中,
AB=AC
∠BAD=∠CAD
AD=AD
,
∴△BAD≌△CAD(ASA),
∴∠ADB=∠ADC,
∵∠ADC+∠ADB=180°,
∴∠ADB=90°,
∴AD⊥BC.
证明:∵AD平分∠BAC,
∴∠BAD=∠CAD,
在△BAD和△CAD中,
AB=AC
∠BAD=∠CAD
AD=AD
,
∴△BAD≌△CAD(ASA),
∴∠ADB=∠ADC,
∵∠ADC+∠ADB=180°,
∴∠ADB=90°,
∴AD⊥BC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
证△BAD≌△CAD,推出∠ADB=∠ADC,求出∠ADB=90°即可.也可以根据等腰三角形的性质求出AD⊥BC.
本题考查了全等三角形的性质和判定的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )