试题

题目:
青果学院(2011·德州)如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证:AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
答案
青果学院(1)证明:在△ACD与△ABE中,
∠A=∠A
∠ADC=∠AEB=90°
AC=AB

∴△ACD≌△ABE,
∴AD=AE.

(2)答:直线OA垂直平分BC.
理由如下:连接BC,AO并延长交BC于F,
在Rt△ADO与Rt△AEO中,
OA=OA
AD=AE

青果学院∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠EAO,
即OA是∠BAC的平分线,
又∵AB=AC,
∴OA⊥BC且平分BC.
青果学院(1)证明:在△ACD与△ABE中,
∠A=∠A
∠ADC=∠AEB=90°
AC=AB

∴△ACD≌△ABE,
∴AD=AE.

(2)答:直线OA垂直平分BC.
理由如下:连接BC,AO并延长交BC于F,
在Rt△ADO与Rt△AEO中,
OA=OA
AD=AE

青果学院∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠EAO,
即OA是∠BAC的平分线,
又∵AB=AC,
∴OA⊥BC且平分BC.
考点梳理
全等三角形的判定与性质.
(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE,
(2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC.
本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中.
应用题;证明题.
找相似题