试题
题目:
(2011·重庆)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
答案
证明:∵AF=DC,
∴AC=DF,
又∵AB=DE,∠A=∠D,
∴△ACB≌△DEF,
∴∠ACB=∠DFE,
∴BC∥EF.
证明:∵AF=DC,
∴AC=DF,
又∵AB=DE,∠A=∠D,
∴△ACB≌△DEF,
∴∠ACB=∠DFE,
∴BC∥EF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;平行线的判定.
根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.
本题考查了两直线平行的判定方法,内错角相等,两直线平行,难度适中.
证明题;压轴题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )