试题

题目:
青果学院已知AO是△ABC中BC边上的高,点D、点E是三角形外的两个点,且满足AD=AE,DB=EC,∠D=∠E,试说明AO平分∠BAC.
答案
解:∵在△ADB和△AEC中,
AD=AE
∠D=∠E
DB=EC

∴△ADB≌△AEC(SAS),
∴AB=AC,
∵AO是△ABC中BC边上的高,
∴AO平分∠BAC.
解:∵在△ADB和△AEC中,
AD=AE
∠D=∠E
DB=EC

∴△ADB≌△AEC(SAS),
∴AB=AC,
∵AO是△ABC中BC边上的高,
∴AO平分∠BAC.
考点梳理
全等三角形的判定与性质.
先根据“SAS”可证明△ADB≌△AEC,则AB=AC,由于AO是△ABC中BC边上的高,根据等腰三角形“三线合一”即可得到AO平分∠BAC.
本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰三角形的性质.
证明题.
找相似题