试题
题目:
在△ABC中,AD是中线,已知AB=5,AC=3,那么中线AD的取值范围是
1<AD<4
1<AD<4
.
答案
1<AD<4
解:如图,延长AD至E,是DE=AD,连接CE,
∵AD是△ABC的中线,
∴BD=CD,
在△ABD和△ECD中,
AD=DE
∠ADB=∠EDC
BD=CD
,
∴△ABD≌△ECD(SAS),
∴AB=CE,
∵AB=5,AC=3,
5-3=2,5+3=8,
∴2<AE<8,
∴1<AD<4.
故答案为:1<AD<4.
考点梳理
考点
分析
点评
全等三角形的判定与性质;三角形三边关系.
作出图形,延长AD至E,是DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.
本题考查了全等三角形的判定与性质,将中线AD延长得AD=DE进而求出是解题的关键.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )