试题

题目:
在△ABC中,AC=5,中线AD=7,则AB边的取值范围是
9<AB<19
9<AB<19

答案
9<AB<19

青果学院解:延长AD到E使DE=AD,连接BE,
∵D是BC的中点,
∴CD=BD.
在△ACD和△EBD中
AD=ED
∠ADC=∠EDB
CD=BD

∴△ACD≌△EBD(SAS),
∴AC=EB=5.
∵AD=7,
∴AE=14.
由三角形的三边关系为:
14-5<AB<14+5,
即9<AB<19.
故答案为:9<AB<19.
考点梳理
全等三角形的判定与性质;三角形三边关系.
如图,延长AD到E使DE=AD,连接BE,通过证明△ACD≌△EBD就可以得出BE=AC,在△AEB中,由三角形的三边关系就可以得出结论.
本题考查了中线的性质的运用,全等三角形的判定及性质的运用,三角形的三边关系的运用,解答时证明三角形全等是关键.
找相似题