试题
题目:
(1)如图1,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.
(2)如图2,等腰Rt△ABC中,∠ACB=90°.直线DE经过△ABC内部,AD⊥DE于点D,BE⊥DE于点E,
试猜想线段AD、BE、DE之间满足什么关系?证明你的结论.
答案
(1)解:CE=DE,CE⊥DE.
理由如下:∵AC⊥AB,DB⊥AB,
∴∠A=∠B=90°,
在△ACE和△BED中,
∵
AC=BE
∠A=∠B=90°
AE=BD
,
∴△ACE≌△BED(SAS),
∴CE=DE,∠C=∠BED,
∵∠C+∠AEC=90°,
∴∠BED+∠AEC=90°,
∴∠CED=180°-90°=90°,
∴CE⊥DE;
(2)解:AD=BE+DE.
理由如下:
∵等腰Rt△ABC中,∠ACB=90°,
∴AC=BC,∠ACD+∠BCE=90°,
∵AD⊥DE于点D,
∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
∵AD⊥DE于点D,BE⊥DE于点E,
∴∠ADC=∠BEC=90°,
在△ACD和△CBE中,
∵
∠CAD=∠BCE
∠ADC=∠BEC=90°
AC=BC
,
∴△ACD≌△CBE(SAS),
∴AD=CE,CD=BE,
∵CE=CD+DE,
∴AD=BE+DE.
(1)解:CE=DE,CE⊥DE.
理由如下:∵AC⊥AB,DB⊥AB,
∴∠A=∠B=90°,
在△ACE和△BED中,
∵
AC=BE
∠A=∠B=90°
AE=BD
,
∴△ACE≌△BED(SAS),
∴CE=DE,∠C=∠BED,
∵∠C+∠AEC=90°,
∴∠BED+∠AEC=90°,
∴∠CED=180°-90°=90°,
∴CE⊥DE;
(2)解:AD=BE+DE.
理由如下:
∵等腰Rt△ABC中,∠ACB=90°,
∴AC=BC,∠ACD+∠BCE=90°,
∵AD⊥DE于点D,
∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
∵AD⊥DE于点D,BE⊥DE于点E,
∴∠ADC=∠BEC=90°,
在△ACD和△CBE中,
∵
∠CAD=∠BCE
∠ADC=∠BEC=90°
AC=BC
,
∴△ACD≌△CBE(SAS),
∴AD=CE,CD=BE,
∵CE=CD+DE,
∴AD=BE+DE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)根据“边角边”证明△ACE和△BED全等,根据全等三角形对应边相等可得CE=DE,根据全等三角形对应角相等可得∠C=∠BED,然后证明∠CED=90°,从而得到CE⊥DE;
(2)根据同角的余角相等可得∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得AD=CE,CD=BE,再结合图形即可得到AD、BE、DE三者之间的关系.
本题考查了全等三角形的判定与性质,两个小题都利用等角的余角相等得到相等的角,从而得到三角形全等的条件是解题的关键.
证明题;探究型.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )