试题
题目:
如图△ABC中,AD平分∠BAC,且AB+BD=AC,若∠B=62°,则∠C=
31°
31°
.
答案
31°
解:如图,在AC上截取AE=AB,连接DE,
∵AD平分∠BAC,
∴∠BAD=∠EAD,
而AD是公共边,
∴△ABD≌△ADE,
∴∠B=∠AED=62°,DE=BD,
而AB+BD=AC=AE+CE,
∴DE=CE,
∴∠EDC=∠C,
而∠AED=∠C+∠EDC=62°,
∴∠C=31°.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
如图,在AC上截取AE=AB,连接DE,可以证明△ABD≌△ADE,然后利用全等三角形的性质和已知条件可以证明△DEC是等腰三角形,接着利用等腰三角形的性质即可求解.
此题主要考查了全等三角形的性质与判定,也考查了角平分线的性质,解题的关键是根据已知条件构造全等三角形,一般可以利用角平分线构造全等三角形解决问题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )