试题
题目:
(2013·启东市一模)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数
y=-
4
x
和y=
2
x
的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为
3
3
.
答案
3
解:设P(0,b),
∵直线AB∥x轴,
∴A,B两点的纵坐标都为b,而点A在反比例函数y=-
4
x
的图象上,
∴当y=b,x=-
4
b
,即A点坐标为(-
4
b
,b),
又∵点B在反比例函数y=
2
x
的图象上,
∴当y=b,x=
2
b
,即B点坐标为(
2
b
,b),
∴AB=
2
b
-(-
4
b
)=
6
b
,
∴S
△ABC
=
1
2
·AB·OP=
1
2
·
6
b
·b=3.
故答案为:3.
考点梳理
考点
分析
点评
专题
反比例函数系数k的几何意义.
先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数y=-
4
x
和y=
2
x
的图象上,可得到A点坐标为(-
4
b
,b),B点坐标为(
2
b
,b),从而求出AB的长,然后根据三角形的面积公式计算即可.
本题考查的是反比例函数系数k的几何意义,即在反比例函数y=
k
x
的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是
|k|
2
,且保持不变.
压轴题;探究型.
找相似题
(2013·淄博)如图,矩形AOBC的面积为4,反比例函数
y=
k
x
的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是( )
如图,点A是反比例函数y=-
6
x
图象上的一点,若OA=2
3
,则△AOB的面积为
3
3
,周长为
2
6
+2
3
2
6
+2
3
.
如图,在反比例函数y=
4
x
图象上有点B
1
、B
2
、B
3
、B
4
、B
5
,过这五个点分别作x轴的垂线,垂足分别是点A
1
、A
2
、A
3
、A
4
、A
5
,且OA
1
=A
1
A
2
=A
2
A
3
=A
3
A
4
=A
4
A
5
=1,△OB
1
B
2
、△OB
2
B
3
、△OB
3
B
4
、△OB
4
B
5
它们的面积分别记为S
1
、S
2
、S
3
、S
4
,则S
1
-S
2
+S
3
-S
4
=
8
5
8
5
.
(2009·湘西州)在反比例函数
y=
k
x
的图象的每一条曲线上,y都随x的增大而减小.
(1)求k的取值范围;
(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为6,求k的值.
(2012·通州区二模)如图,点C在反比例函数
y=
k
x
的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC的面积是3.
(1)求反比例函数
y=
k
x
的解析式;
(2)若CD=1,求直线OC的解析式.