试题
题目:
(2011·泉州)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.
答案
证明:∵AB∥DE,
∴∠B=∠DEF.
∵BE=CF,
∴BC=EF.
∵∠ACB=∠F,
∴
∠B=∠DEF
BC=EF
∠ACB=∠F
,
∴△ABC≌△DEF(ASA).
证明:∵AB∥DE,
∴∠B=∠DEF.
∵BE=CF,
∴BC=EF.
∵∠ACB=∠F,
∴
∠B=∠DEF
BC=EF
∠ACB=∠F
,
∴△ABC≌△DEF(ASA).
考点梳理
考点
分析
点评
专题
全等三角形的判定;平行线的性质.
根据平行线的性质可知由∠B=∠DEF.BE=CF,∠ACB=∠F,根据ASA定理可知△ABC≌△DEF.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
证明题.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )