试题

题目:
青果学院(2012·大兴区二模)已知:如图,∠ABC=90°,DC⊥BC,E,F为BC上两点,且BE=CF,AB=DC.
求证:△ABF≌△DCE.
答案
青果学院证明:∵BE=CF,
∴BE+FE=CF+EF,
即:BF=CE,
∵DC⊥BC,
∴∠ABC=∠DCE=90°,
在△ABF和△DCE中
BF=CE
∠ABC=∠DCE=90°
AB=DC

∴△ABF≌△DCE(SAS).
青果学院证明:∵BE=CF,
∴BE+FE=CF+EF,
即:BF=CE,
∵DC⊥BC,
∴∠ABC=∠DCE=90°,
在△ABF和△DCE中
BF=CE
∠ABC=∠DCE=90°
AB=DC

∴△ABF≌△DCE(SAS).
考点梳理
全等三角形的判定.
首先根据BE=CF可得到BF=CE,再根据DC⊥BC,可得∠ABC=∠DCE=90°,再加上条件AB=DC,可以用SAS证明:△ABF≌△DCE.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
证明题.
找相似题