试题
题目:
(2013·柳州二模)已知Rt△ABC中,∠B=90°,AD平分∠A,交BC边于点D.
(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;连接DE.
(2)在(1)所作的图形中证明:△DHE≌△AHF.
答案
(1)解:如图所示;
(2)证明:连接ED,
∵AD平分∠A,
∴∠BAD=∠CAD,
∵EF垂直平分AD,
∴AH=EH,EA=ED,
∴∠BAD=∠ADE,
∴∠BAD=∠CAD,
∵在△DHE和△AHF中,
∠FAH=∠EDH
AH=DH
∠AHF=∠DHE
,
∴△DHE≌△AHF(ASA).
(1)解:如图所示;
(2)证明:连接ED,
∵AD平分∠A,
∴∠BAD=∠CAD,
∵EF垂直平分AD,
∴AH=EH,EA=ED,
∴∠BAD=∠ADE,
∴∠BAD=∠CAD,
∵在△DHE和△AHF中,
∠FAH=∠EDH
AH=DH
∠AHF=∠DHE
,
∴△DHE≌△AHF(ASA).
考点梳理
考点
分析
点评
作图—复杂作图;全等三角形的判定.
(1)根据线段垂直平分线的作法作图即可;
(2)首先根据线段垂直平分线的性质可得AH=EH,EA=ED,进而得到∠BAD=∠ADE,再根据角平分线的性质可得∠BAD=∠CAD,进而得到∠BAD=∠CAD,再加上对顶角∠AHF=∠DHE,可利用ASA证明△DHE≌△AHF.
此题主要考查了基本作图,以及全等三角形的判定与线段垂直平分线的性质,关键是掌握全等三角形的判定定理SSS、SAS、ASA、AAS.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )