试题
题目:
(2013·平顶山二模)如图,已知∠AOB以O为圆心,以任意长为半径作弧,分别交OA、OB于F、E两点,再分别以E、F为圆心,大于
1
2
EF长为半径作圆弧,两条圆弧交于点P,作射线OP,过点F作FD∥OB交OP于点D.
(1)若∠OFD=116°,求∠DOB的度数;
(2)若FM⊥OD,垂足为M,求证:△FMO≌△FMD.
答案
(1)解:∵OB∥FD,
∴∠0FD+∠A0B=18O°,
又∵∠0FD=116°,
∴∠A0B=180°-∠0FD=180°-116°=64°,
由作法知,0P是∠A0B的平分线
∴∠D0B=
1
2
∠A0B=32°;
(2)证明:∵0P平分∠A0B,
∴∠A0D=∠D0B,
∵0B∥FD,
∴∠D0B=∠ODF,
∴∠A0D=∠ODF,
又∵FM⊥0D,
∴∠OMF=∠DMF,
在△MFO和△MFD中
∠OMF=∠DMF
∠AOD=∠ODF
FM=FM
,
∴△MFO≌△MFD(AAS).
(1)解:∵OB∥FD,
∴∠0FD+∠A0B=18O°,
又∵∠0FD=116°,
∴∠A0B=180°-∠0FD=180°-116°=64°,
由作法知,0P是∠A0B的平分线
∴∠D0B=
1
2
∠A0B=32°;
(2)证明:∵0P平分∠A0B,
∴∠A0D=∠D0B,
∵0B∥FD,
∴∠D0B=∠ODF,
∴∠A0D=∠ODF,
又∵FM⊥0D,
∴∠OMF=∠DMF,
在△MFO和△MFD中
∠OMF=∠DMF
∠AOD=∠ODF
FM=FM
,
∴△MFO≌△MFD(AAS).
考点梳理
考点
分析
点评
全等三角形的判定;作图—复杂作图.
(1)首先根据OB∥FD,可得∠0FD+∠A0B=18O°,进而得到∠AOB的度数,再根据作图可知OP平分∠AOB,进而算出∠DOB的度数即可;
(2)首先证明∴∠A0D=∠ODF,再由FM⊥0D可得∠OMF=∠DMF,再加上公共边FM=FM可利用AAS证明△FMO≌△FMD.
此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )