试题
题目:
已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD.△ABC与△CED全等吗?为什么?
答案
解:△ABC与△CED全等,
理由是:∵AC⊥CD,
∴∠ACD=90°,
∵∠B=∠E=90°,
∴∠∠1+∠2=90°,∠1+∠A=90°,
∴∠A=∠2,
在△ABC和△CED中
∠A=∠2
∠B=∠E
AC=CD
∴△ABC≌△CED(AAS).
解:△ABC与△CED全等,
理由是:∵AC⊥CD,
∴∠ACD=90°,
∵∠B=∠E=90°,
∴∠∠1+∠2=90°,∠1+∠A=90°,
∴∠A=∠2,
在△ABC和△CED中
∠A=∠2
∠B=∠E
AC=CD
∴△ABC≌△CED(AAS).
考点梳理
考点
分析
点评
全等三角形的判定.
求出∠2=∠A,根据AAS推出两三角形全等即可.
本题考查了三角形内角和定理,全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )