试题
题目:
已知AD是△ABC的角平分线,DE⊥AB、DF⊥AC垂足分别为E、F,请说明△ADE≌△ADF的理由.
解:因为DE⊥AB、DF⊥AC (
已知
已知
)
所以∠AED=90°,∠AFD=90°(
垂直定义
垂直定义
)
所以∠AED=∠AFD (
等量代换
等量代换
)
因为AD是△ABC的角平分线 (
已知
已知
)
所以∠DAE=∠DAF (
角平分线定义
角平分线定义
)
在△ADE与△ADF中
∠AED=∠AFD、∠DAE=∠DAF(
已证
已证
)
所以△ADE≌△ADF (
AAS
AAS
).
答案
已知
垂直定义
等量代换
已知
角平分线定义
已证
AAS
解:∵DE⊥AB,DF⊥AC(已知),
∴∠AED=90°,∠AFD=90°(垂直定义),
∴∠AED=∠AFD(等量代换),
∵AD是△ABC的角平分线(已知),
∴∠DAE=∠DAF(角平分线定义),
在△ADE和△ADF中
∠AED=∠AFD,∠DAE=∠DAF(已证),AD=AD,
∴△ADE≌△ADF(AAS),
故答案为:已知,垂直定义,等量代换,已知,角平分线定义,已证,AAS.
考点梳理
考点
分析
点评
专题
全等三角形的判定.
求出∠AED=∠AFD,∠DAE=∠DAF,根据AAS推出两三角形全等即可.
本题考查了全等三角形的判定定理,角平分线定义,垂直定义的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
推理填空题.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )