试题
题目:
如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有( )种.
A.1
B.2
C.3
D.4
答案
C
解:添加的条件可以为:
∠B=∠B′;∠C=∠C′;AC=A′C′,共3种.
若添加∠B=∠B′,
证明:在△ABC和△A′B′C′中,
∠A=∠A′
AB=A′B′
∠B=∠B′
,
∴△ABC≌△A′B′C′(ASA);
若添加∠C=∠C′,
证明:在△ABC和△A′B′C′中,
∠A=∠A′
∠C=∠C′
AB=A′B′
,
∴△ABC≌△A′B′C′(AAS);
若添加AC=A′C′,
证明:在△ABC和△A′B′C′中,
AC=A′C′
∠A=∠A′
AB=A′B′
,
∴△ABC≌△A′B′C′(SAS).
故选C
考点梳理
考点
分析
点评
全等三角形的判定.
本题要证明△ABC≌△A′B′C′,已知了AB=A′B′,∠A=∠A′,可用的判别方法有ASA,AAS,及SAS,所以可添加一对角∠B=∠B′,或∠C=∠C′,或一对边AC=A′C′,分别由已知与所添的条件即可得证.
此题考查了全等三角形的判定,是一道条件开放型问题,需要执因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )