试题
题目:
公园里有一条“Z”形道路(如图所示),其中AB∥CD,在AB,BC,CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点.
求证:三只小石凳E,F,M恰好在一条直线上.
答案
证明:连接ME,MF.
∵AB∥CD,(已知)
∴∠B=∠C(两线平行内错角相等).
在△BEM和△CFM中,
BE=CF(已知)
∠B=∠C(已证)
BM=CM(中点定义)
∴△BEM≌△CFM(SAS).
∴∠BME=∠CMF,
∴∠EMF=∠BME+∠BMF=∠CMF+∠BMF=∠BMC=180°,
∴E,M,F在一条直线上.
证明:连接ME,MF.
∵AB∥CD,(已知)
∴∠B=∠C(两线平行内错角相等).
在△BEM和△CFM中,
BE=CF(已知)
∠B=∠C(已证)
BM=CM(中点定义)
∴△BEM≌△CFM(SAS).
∴∠BME=∠CMF,
∴∠EMF=∠BME+∠BMF=∠CMF+∠BMF=∠BMC=180°,
∴E,M,F在一条直线上.
考点梳理
考点
分析
点评
专题
全等三角形的判定.
先根据SAS判定△BEM≌△CFM,从而得出∠BME=∠CMF.通过角之间的转换可得到E,M,F在一条直线上.
此题主要考查了学生对全等三角形的判定的掌握情况,注意共线的证明方法.
证明题.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )