试题
题目:
如图,已知:∠B=∠DEF,BC=EF,现要证明△ABC≌△DEF,
若要以“SAS”为依据,还缺条件
AB=DE
AB=DE
;
若要以“ASA”为依据,还缺条件
∠ACB=∠DFE
∠ACB=∠DFE
;
若要以“AAS”为依据,还缺条件
∠A=∠D
∠A=∠D
,并说明理由.
答案
AB=DE
∠ACB=∠DFE
∠A=∠D
解:AB=DE,∠ACB=∠DFE,∠A=∠D.
①若添加条件是AB=DE,利用SAS可证两个三角形全等;
②若添加条件是∠ACB=∠DFE,利用ASA可证两个三角形全等;
③若添加条件是∠A=∠D,利用AAS可证两个三角形全等;
故分别填AB=DE,∠ACB=∠DFE,∠A=∠D.
考点梳理
考点
分析
点评
专题
全等三角形的判定.
由于已知一组对应角相等,一组对应边相等,若利用SAS证全等,那么所需的另一边应该是已知角的夹边相等;若利用ASA证全等,则所需的另一角是以已知边为边的另一个角相等;若利用AAS证全等,所需的另一角是已知边的对角相等.
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
开放型.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )