试题

题目:
青果学院如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.
(1)求证:△AOC≌△BOD;
(2)若OA=3cm,OC=1cm,求阴影部分的面积.
答案
(1)证明:∵∠COD=∠AOB=90°,
∴∠AOC+∠AOD=∠AOD+∠BOD,
∴∠AOC=∠BOD,
在△AOC和△BOD中,
OC=OD
∠AOC=∠BOD
OA=OB

∴△AOC≌△BOD(SAS);

(2)解:S阴影=S扇形AOB-S扇形COD=
1
4
π×32-
1
4
π×12=2π(cm2).
(1)证明:∵∠COD=∠AOB=90°,
∴∠AOC+∠AOD=∠AOD+∠BOD,
∴∠AOC=∠BOD,
在△AOC和△BOD中,
OC=OD
∠AOC=∠BOD
OA=OB

∴△AOC≌△BOD(SAS);

(2)解:S阴影=S扇形AOB-S扇形COD=
1
4
π×32-
1
4
π×12=2π(cm2).
考点梳理
扇形面积的计算;全等三角形的判定.
(1)根据90°的角可以证明,∠AOC=∠BOD,再根据同一扇形的半径相等,利用边角边定理即可证明三角形全等;
(2)根据扇形面面积公式求出阴影部分的面积.
本题主要考查了全等三角形的判定和如何计算扇形的面积,全等三角形的证明,常用的方法有“边边边”,“边角边”,“角边角”,“角角边”,本题证明得到∠AOC=∠BOD是解题的关键.
找相似题